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ABSTRACT

Z-stack scanning is an emerging whole slide imaging technol-
ogy that captures multiple focal planes alongside the z-axis of
a glass slide. Because z-stacking can offer enhanced depth in-
formation compared to the single-layer whole slide imaging,
this technology can be particularly useful in analyzing small-
scaled histopathological patterns. However, its actual clinical
impact remains debated with mixed results. To clarify this, we
investigate the effect of z-stack scanning on artificial intelli-
gence (AI) mitosis detection of meningiomas. With the same
set of 22 Hematoxylin and Eosin meningioma glass slides
scanned by three different digital pathology scanners, we
tested the performance of three AI pipelines on both single-
layer and z-stacked whole slide images (WSIs). Results
showed that in all scanner-AI combinations, z-stacked WSIs
significantly increased AI’s sensitivity (+17.14%) on the mi-
tosis detection with only a marginal impact on precision. Our
findings provide quantitative evidence that highlights z-stack
scanning as a promising technique for AI mitosis detection,
paving the way for more reliable AI-assisted pathology work-
flows, which can ultimately benefit patient management.

Index Terms— Z-stack scanning, mitosis detection, Ar-
tificial Intelligence, meningiomas

1. INTRODUCTION

In digital pathology, the “z-stack” is a multi-planar scanning
technology that captures various focal planes of glass slides
along the “z” axis (i.e., perpendicular to the slide surface
plane) [1]. Different from traditional “single-layer” scanning
with a single focus plane, z-stack scanning preserves more
detailed specimen information from multiple planes of focal
depths, which, inevitably, also introduces longer scanning
time and larger file sizes [2]. To date, the z-stack feature has
been available in various digital pathology scanners [1] and
has been popularly employed in the analysis of cytopathology
smears [3].
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Interestingly, there are mixed opinions on whether z-
stack scanning can enhance pathology analysis. On one hand,
multiple previous works have indicated that the z-stack can
improve pathologists’ judgment and AI performance. For
instance, Kalinski et al. reported the number of focal planes
was positively related to pathologists’ correctness in classify-
ing Helicobacter pylori [4]. Kim et al. showed that z-stack
enhanced pathologists’ evaluation of high-grade urothelial
carcinomas [5]. Nurzynska et al. observed significant perfor-
mance improvements of AI in identifying low-burden acid-
fast mycobacteria on z-stacked WSIs [6]. On the other hand,
Sturm et al. reported that z-stack scanning did not improve
pathologists’ diagnostic accuracy in classifying melanocytic
lesions or detecting dermal mitosis [2].

We believe that the discrepancies in prior works’ results
are due to two main reasons: (1) variations in the z-stack
scanning algorithms from different vendors, and (2) differ-
ences in the specimens selected for each study. Therefore,
this work aims to provide a more systematic evaluation of AI
performance on z-stack vs. single-layer WSIs with three scan-
ners and three AI pipelines on the same set of glass slides.
Here, we conduct a case study of mitosis detection in menin-
giomas. The mitosis is a small-sized (∼ 10µm, see Figure
2) pattern that is critical in meningioma grading [7]. Despite
its importance, mitosis assessment by pathologists is usually
time-consuming and suffers from low concordance [8]. In re-
sponse, recent years have seen the advancement of deep learn-
ing models for mitosis detection [9, 10], with some capable of
augmenting pathologists in this task [11, 12, 13].

22 meningioma Hematoxylin and Eosin (H&E) slides
with 6,350 mitoses were digitized using both single-layer and
z-stack settings with three scanners from three vendors. We
determined the performance of three deep learning pipelines
on these slides by measuring the sensitivity and precision.
In all scanner-AI combinations, the deep learning pipelines
achieved significantly higher sensitivity, with an average im-
provement of 17.14% (single-layer: 0.601, z-stack: 0.704).
Meanwhile, the impact on precision from z-stack scanning
was marginal (single-layer: 0.753, z-stack: 0.757).
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Fig. 1: Deep learning mitosis detection pipeline for (a) single-layer WSIs and (b) z-stacked WSIs.

Fig. 2: Examples of mitoses annotated on WSIs from the Pan-
noramic 250 scanner (+0.0µm focus plane), bar=5µm.

2. MATERIALS AND METHODS

2.1. Specimen Collection and Mitosis Annotation

22 de-identified H&E meningioma slides were collected from
the University of Kansas Medical Center. These slides were
initially scanned by Pannoramic 250 scanner (3DHISTECH,
Hungary) with 41× objective (0.121µm per pixel, hereafter
mpp) and z-stack (five planes: -1.2µm, -0.6µm, +0.0µm,
+0.6µm, +1.2µm) setting. Mitosis annotation was performed
on the z-stacked WSIs. Two pathology trainees individually
screened the 22 slides and provided the preliminary mitosis
annotations. Next, a third neuropathologist reviewed and fi-
nalized the annotations. In total, 6,350 mitoses were anno-
tated. Examples of annotated mitoses are shown in Figure 2.

2.2. Slide Scanning

We selected three digital pathology scanners with z-stack
features: (1) Pannoramic 480DX (3DHISTECH, Hungary,

hereafter P480DX), (2) Aperio GT 450 (Leica, Germany,
hereafter GT 450), and (3) AxioScan 7 (Zeiss, Germany).
For each scanner, the glass slides were scanned into WSIs
with both single-layer and z-stack settings specified in Table
1. The resulting WSIs were exported to the bigTIFF format
with JPEG compression (90% quality) using the software
provided by the vendor. These WSIs were then rescaled to
approximately 0.25 mpp to match the resolution of 40×. A
two-stage registration process [8] translated the locations of
ground truth mitoses acquired from Section 2.1 to the WSIs.

Table 1: Settings used for single-layer and z-stack scanning,
mpp: µm per pixel, WI: water immersion.

Scanner
Scanning Settings

Z Planes Objective Resolution
Interplane
Distance

P480DX
1 41×, WI 0.121 mpp N/A
5 41×, WI 0.121 mpp 0.6 µm

GT 450
1 40×, Air 0.263 mpp N/A
5 40×, Air 0.263 mpp 0.75 µm

AxioScan 7
1 40×, Air 0.086 mpp N/A
5 40×, Air 0.086 mpp 0.6 µm

2.3. Deep Learning Inferencing Pipeline

We used a two-stage deep learning-based inferencing pipeline
similar to [10] (Figure 1(a)): (1) a segmentation model first
selects mitosis candidates, followed by (2) an ensemble of
four convolutional neural networks (CNNs) to verify these
candidates. The pipeline supports three types of segmenta-
tion models: PSPNet [14], Segformer [15], and DeeplabV3+
[16]. The ensemble method was a random forest classi-



fier that predicts based on the output of four CNN mod-
els: EfficientNet-b3, EfficientNet-b5 [17], EfficientNetv2-
s, and EfficientNetv2-m [18]. This deep learning pipeline
was trained using four mitosis datasets of human and an-
imal specimens (MIDOG++ [9], MITOS WSI CMC [19],
MITOS WSI CCMCT [20], meningioma mitosis [8]). The
training set included 38,634 mitoses in total. Note that all
slides in the training set were scanned in the single layer.

We further customized the deep learning pipeline for z-
stacked WSIs (Figure 1(b)). First, the segmentation model
was applied to each layer of the z-stacked WSIs. Then, mi-
tosis candidates from all z-planes were combined. If the dis-
tance between any two candidates in the combined set was
less than 10 pixels (2.5 µm), they were considered dupli-
cates and merged. Next, for each mitosis candidate on ev-
ery layer, four CNN models were applied, resulting in 5 (z-
planes) × 4 (CNNs) = 20 predictions. Finally, these 20 pre-
dictions were passed to the random forest classifier to predict
a mitosis probability.

Considering the variation in imaging quality across dif-
ferent scanners (see Figure 3), for each scanner, we selected
one same slide (including 411 mitoses) from 22 slides in Sec-
tion 2.2 to re-calibrate the random forest classifier. The re-
calibration process was performed separately on both single-
layer and z-stacked WSIs. We used the remaining 21 WSIs
(including 5,939 mitoses) as the test set to evaluate the per-
formance of the mitosis detection pipeline. The inferencing
was repeated 20 times for performance evaluation.

2.4. Measures and Statistics

The performance of deep learning pipelines was measured by
the sensitivity and precision [10]. For all combinations (i.e.,
3 (scanners) × 3 (deep learning pipelines) = 9 conditions per
metric) of scanners and deep learning pipelines, we conducted
a one-way ANOVA followed by TukeyHSD test to compare
each metric on single-layer vs. z-stacked WSIs. The mean
values were calculated by the bootstrapping method (10,000
times with replacement).

3. RESULTS

The total file size for single-layer WSIs was 87.02 GB. As
a comparison, z-stacked WSIs had 418.92 GB, which is
∼3.81× larger. Examples of mitoses extracted from the three
scanners are shown in Figure 3.

Table 2 shows the sensitivity results: in all nine condi-
tions, there was a significant increase in AI sensitivity. On av-
erage, sensitivity of deep learning improved from 0.601 on the
single-layer WSIs to 0.704 on the z-stacked WSIs (+17.14%).

1We used the same ensemble method for three pipelines. Therefore, the
name of the segmentation model was used to represent the pipeline in tables
2 and 3.

AxioScan 7GT 450P480DX

Single-Layer Scans

Z 
Pl

an
e 

0

Z-Stack Scans

AxioScan 7GT 450P480DX

Z 
Pl

an
e 

1
Z 

Pl
an

e 
2

Z 
Pl

an
e 

3
Z 

Pl
an

e 
4

Fig. 3: Examples of mitoses under the single-layer and z-
stack scanning with three scanners, bar=5µm.

The highest improvement was observed with the PSPNet seg-
mentation on AxioScan 7 WSIs, where its sensitivity was in-
creased from 0.398 to 0.554 (+39.24%). The highest sensi-
tivity was achieved with the DeepLabV3+ segmentation on
GT 450 WSIs, with an improvement from 0.681 in the single-
layer to 0.773 in the z-stack (+13.52%).

Table 3 presents the precision results: across the nine con-
ditions, statistical significance was not observed in six. Two
conditions under the P480DX WSIs showed significant im-
provements with the Segformer (+3.91%) and DeepLabV3+
(+9.70%) segmentation. However, one condition using GT
450 scanner – Segformer segmentation showed a significant
precision decrease, from 0.770 to 0.710 (-7.86%). On aver-
age, deep leaning achieved a precision of 0.753 on single-
layer WSIs and 0.757 on z-stacked WSIs. The highest preci-
sion was recorded in the Segformer segmentation on the Ax-



Table 2: Sensitivity of three deep learning pipelines on WSIs
from three scanners1.

Scanner Segmentation Single-
Layer Z-Stack ∆ p

P480DX
PSPNet 0.633 0.726 +14.74% <0.001

Segformer 0.664 0.726 +9.32% <0.001
DeepLabV3+ 0.675 0.717 +6.23% <0.001

GT 450
PSPNet 0.636 0.739 +16.33% <0.001

Segformer 0.616 0.740 +20.09% <0.001
DeepLabV3+ 0.681 0.773 +13.52% <0.001

AxioScan 7
PSPNet 0.398 0.554 +39.24% <0.001

Segformer 0.447 0.574 +28.28% <0.001
DeepLabV3+ 0.583 0.713 +22.25% <0.001

Average 0.601 0.704 +17.14% N/A

Table 3: Precision of three deep learning pipelines on WSIs
from three scanners.

Scanner Segmentation Single-
Layer Z-Stack ∆ p

P480DX
PSPNet 0.768 0.787 +2.46% 0.999

Segformer 0.763 0.793 +3.91% <0.001
DeepLabV3+ 0.720 0.790 +9.70% <0.001

GT 450
PSPNet 0.714 0.735 +3.04% 0.957

Segformer 0.770 0.710 -7.86% <0.001
DeepLabV3+ 0.729 0.704 -3.46% 0.825

AxioScan 7

PSPNet 0.815 0.802 -1.59% 0.999
Segformer 0.845 0.834 -1.31% 0.999

DeepLabV3+ 0.739 0.729 -1.30% 0.999
Average 0.753 0.757 +0.53% N/A

ioScan 7 scanner, with precision of 0.845 for single-layer and
0.834 for z-stack.

4. DISCUSSION & CONCLUSION

A major gap between the light microscope and regular single-
layer whole slide imaging is that pathologists can adjust the
fine focus of the microscope, whereas single-layer WSI has
only one plane. Z-stack scanning bridges this gap by provid-
ing extra z-level information, which has the potential to en-
hance histology analysis on small-scaled features, cytology,
and non-FFPE hematopathology. This study presents the first
quantitative evidence that AI can achieve significantly higher
sensitivity with only marginal impact on the precision in de-
tecting mitoses in meningiomas. Such improvement is both
scanner- and AI-agnostic. Future studies can validate whether
the improvement is generalizable by testing on multiple histo-
logical patterns (e.g., H. pylori) and mitoses on more diverse
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Fig. 4: Examples of mitoses missed by the deep learn-
ing pipeline with DeepLabV3+ segmentation model on
single-layer WSIs but were captured under z-stacked WSIs,
bar=5µm.

tumor sites (e.g., breast cancer [10]).
Compared to regular single-layer scanning, z-stack scan-

ning provides enhanced focus control by covering a broader
range of depth information, resulting images with higher
quality. For instance, as shown in Figure 4, while single-layer
WSIs do not exhibit significant out-of-focus issues, z-stack
technique captures more nuanced chromosomal features, and
might enhance the deep learning performance thereafter.

Meanwhile, it is noteworthy that the file size of z-stacked
WSIs increases linearly with the number of z-planes, which
brings challenges to storage and file management. More re-
cently, the “extended focus” algorithm, or multi-focus image
fusion technology, can collapse z-layers into a single layer,
which can potentially reduce the size of z-stacked WSIs with-
out compromising the AI performance. Therefore, we suggest
future research explore the optimal setting to balance the file
size and the imaging quality – including the number of planes,
the interplane distance, as well as the compression settings –
while taking the scanner hardware into consideration.
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